Sciences Physiques

Correction du sujet de l'examen national du Baccalauréat Session de rattrapage : 2020

Prof: Lahcen AMAHZOUNE

Exercice 1: (Chimie)

,,,È&FÈ;æ

Partie 1:

I)

1) L'équation de réaction de CH₃COO avec l'eau :

$$CH_3COO_{(aq)}$$
 + $H_2O_{(\ell)}$ \longrightarrow $CH_3COOH_{(aq)}$ + $HO_{(aq)}$

2) La valeur de [HO]:

On a :
$$K_e = [HO^-] \cdot [H_3O^+] \longrightarrow [HO^-] = \frac{Ke}{[H_3O^+]} \longrightarrow [HO^-] = \frac{Ke}{10^{-pH}}$$
 ; $[HO^-] = \frac{10^{-14}}{10^{-7.9}}$

 $[HO^{-}] = 7,94.10^{-7} \text{mol.L}^{-1}$

- 3) La valeur de taux d'avancement τ:
 - * Tableau d'avancement :

Equation de la réaction		CH ₃ COO (aq)	$+$ $H_2O(\ell)$	CH ₃ COOH _(aq)	+ HO (aq)
Etat du système	Avancement	Quantité de la matière en (mol)			
Initial	x=0	C.V	E.	0	0
Intermédiaire	x	C.V - x	En excès	x	X
Final	X _{éq}	C.V - x _{éq}		X _{éq}	X _{éq}

❖ <u>Le taux d'avancement :</u>

On a:
$$\tau = \frac{x_{\text{\'e}q}}{x_{max}}$$

- L'eau en excès donc : x_{max}=C.V (CH₃COO (aq) est une réactif limitant).
- $n_{\text{éq}}(HO^{-}) = x_{\text{éq}} = [HO^{-}].V$

Donc:
$$\tau = \frac{[HO^-].V}{C.V}$$
 $\tau = \frac{[HO^-]}{C}$; $\tau = \frac{7,94.10^{-7}}{10^{-3}}$

 $\tau = 7.94.10^{-4}$

- * τ<1: la réaction est limitée.
- 4) La valeur de Q_{r,éq}:

$$\mathbf{Q}_{\mathsf{r,\acute{e}q}} = \frac{[\mathsf{CH}_{3}\mathsf{COOH}]_{\acute{e}q} \cdot [\mathsf{HO}^{-}]_{\acute{e}q}}{[\mathsf{CH}_{3}\mathsf{COO}^{-}]_{\acute{e}q}}$$

$$\mathcal{F}$$
 [CH₃COOH]_{éq} = [HO]_{éq} = $\frac{x_{\acute{e}q}}{V}$ = $\frac{\tau.x_{max}}{V}$ = $\frac{\tau.C.V}{V}$ = $\tau.C$

$$\text{[CH}_3\text{COO}_{\text{]éq}} = \frac{C.V - x_{\text{éq}}}{V} = \text{C} - \frac{x_{\text{éq}}}{V} = \text{C} - \tau.\text{C} = \text{C(1 - }\tau)$$

Donc:
$$Q_{r,\acute{e}q} = \frac{\tau.C.\tau.C}{C(1-\tau)}$$
 \longrightarrow $Q_{r,\acute{e}q} = \frac{C.\tau^2}{1-\tau}$; $Q_{r,\acute{e}q} = \frac{10^{-3}.(7.94.10^{-4})^2}{1-7.94.10^{-4}}$

 $Q_{r,ég} = 6,31.10^{-10}$

5) Vérification de la valeur de pK_{A1}:

$$\begin{split} \mathsf{pK_{A1}} &= -log(\mathsf{K_{A1}}) = -log(\frac{[\mathsf{CH_3COO^-}].[\mathsf{H_3O^+}]}{[\mathsf{CH_3COOH}]}) = -log(\frac{[\mathsf{CH_3COO^-}].[\mathsf{H_3O^+}].[\mathsf{HO^-}]}{[\mathsf{CH_3COOH}].[\mathsf{HO^-}]}) \\ &= -log(\frac{[\mathsf{CH_3COO^-}].[\mathsf{H_3O^+}].[\mathsf{HO^-}]}{[\mathsf{CH_3COOH}].[\mathsf{HO^-}]}) \\ &= \mathsf{pk_{A1}} = -log(\frac{K_e}{Q_{r,\acute{e}q}}) \quad ; \quad \mathsf{pK_{A1}} = -log(\frac{10^{-14}}{6,31.10^{-10}}) \\ &= \mathsf{pk_{A1}} = 4,8 \end{split}$$

II)

1) L'équation de la réaction entre l'acide HCOOH et la basse CH₃COO :

$$HCOOH_{(aq)}$$
 + $CH_3COO^*_{(aq)}$ \longleftrightarrow $HCOO^*(aq)$ + $CH_3COOH_{(aq)}$

2)La valeur de K:

$$\mathsf{K} = \frac{[\mathsf{CH}_3\mathsf{COOH}].[\mathsf{HCOO}^-]}{[\mathsf{CH}_3\mathsf{COO}^-].[\mathsf{HCOOH}]} = \frac{[\mathsf{CH}_3\mathsf{COOH}].[\mathsf{HCOO}^-].[\mathsf{H}_3\mathsf{O}^+]}{[\mathsf{CH}_3\mathsf{COO}^-].[\mathsf{HCOOH}].[\mathsf{H}_3\mathsf{O}^+]} = \frac{[\mathsf{HCOO}^-].[\mathsf{H}_3\mathsf{O}^+]}{[\mathsf{HCOOH}]} \cdot \frac{[\mathsf{CH}_3\mathsf{COO}^-].[\mathsf{H}_3\mathsf{O}^+]}{[\mathsf{CH}_3\mathsf{COO}^-].[\mathsf{H}_3\mathsf{O}^+]}$$

$$\mathsf{K} = \mathsf{K}_{\mathsf{A2}} \cdot \frac{1}{\mathsf{K}_{\mathsf{A1}}} = \mathbf{10}^{-\mathsf{pKA2}} \cdot \frac{1}{\mathbf{10}^{-\mathsf{pKA1}}} \qquad \qquad \mathsf{K} = \mathbf{10}^{\mathsf{pKA1} - \mathsf{pkA2}}$$
 ; $\mathsf{K} = \mathbf{10}^{\mathsf{4,8} - \mathsf{3,8}}$

K=10

3) La valeur de Q_{r,i} à t=0 :

$$\mathbf{Q}_{\mathsf{r},\mathsf{i}} = \frac{[\mathsf{CH}_3\mathsf{COOH}]_i.[\mathsf{HCOO}^-]_i}{[\mathsf{CH}_3\mathsf{COO}^-]_i.[\mathsf{HCOOH}]_i} \qquad \qquad \mathbf{Q}_{\mathsf{r},\mathsf{i}} = \frac{\mathsf{C}_3\mathsf{C}_4}{\mathsf{C}_2\mathsf{C}_1} \quad ; \quad \mathsf{Q}_{\mathsf{r},\mathsf{i}} = \frac{\mathsf{0},\mathsf{1} \cdot \mathsf{0},\mathsf{1}}{\mathsf{0},\mathsf{1} \cdot \mathsf{0},\mathsf{1}}$$

 $Q_{r,i} = 1$

- 4) $Q_{r,i} < K$: La réaction s'évolue dans le sens direct (\longrightarrow).
- 5) La valeur de pH:

Pour le couple (HCOO⁻/HCOOH) on a :
$$pH = pK_{A2} + log(\frac{[HCOO^-]_{\acute{e}q}}{[HCOOH]_{\acute{e}q}})$$

❖ Tableau d'avancement :

Equation de la réaction		$HCOOH_{(aq)} + CH_3COO_{(aq)} + CH_3COOH_{(aq)}$				
Etat du système	Avancement	Quantité de la matière en (mol)				
Initial	x=0	C ₁ .V ₁	C ₂ .V ₂		C ₄ .V ₄	C ₃ .V ₃
Equilibre	X _{éq}	C ₁ . V ₁ - x _{éq}	C ₂ .V ₂ - x _{éq}		$C_4.V_4 + x_{eq}$	C ₃ . V ₃ + x _{éq}

♦ [HCOO]_{éq} =
$$\frac{C_4 \cdot V_4 + x_{éq}}{V_T}$$
 avec : $V_T = V_1 + V_2 + V_3 + V_4$

♦ [HCOOH]_{éq} =
$$\frac{C_1.V_1 - x_{éq}}{V_T}$$
 avec : $V_T = V_1 + V_2 + V_3 + V_4$

Donc:
$$pH = pK_{A2} + log(\frac{c_4.v_4 + x_{\acute{e}q}}{c_1.v_1 - x_{\acute{e}q}})$$
; : $pH = 3.8 + log(\frac{0.1.100.10^{-3} + 5.39.10^{-3}}{0.1.100.10^{-3} - 5.39.10^{-3}})$

pH≈4,3

Remarque: En utilisant la même méthode pour le couple (CH3COO-/CH3COOH), on obtient le

,,其&F模æ

même résultat, par la relation pH=
$$pK_{A1} + log(\frac{c_2 \cdot v_2 - x_{eq}}{c_3 \cdot v_3 + x_{eq}})$$

Partie 2:

1) Le schéma conventionnelle de la pille :

$$A\ell_{(s)}/A\ell^{3+}_{(aq)}//Zn^{2+}_{(aq)}/Zn_{(s)}$$

- 2)L'équation de la réaction :
 - ✓ Au voisinage de la cathode : ($Zn^{2+}_{(aq)} + 2e$ \longrightarrow $Zn_{(s)}$)x3
 - ✓ Au voisinage de l'anode : ($A\ell_{(s)} \implies A\ell^{3+}_{(aq)} + 3e^{-}$)x2
 - ✓ Equation bilan : $3Zn^{2+}_{(aq)} + 2A\ell_{(s)} \longrightarrow 3Zn_{(s)} + 2A\ell^{3+}_{(aq)}$
- 3) La valeur de [Zn²+]_{rest} reste après une durée de 30min :

$$[Zn^{2+}]_{rest} = [Zn^{2+}]_i - [Zn^{2+}]_{réag}$$

On a:
$$Zn^{2+}_{(aq)} + 2e^{-} \implies Zn_{(s)} \ donc : \frac{n_{r\acute{e}ag}(Zn^{2+})}{1} = \frac{n(e^{-})}{2} \implies n(e^{-}) = 2n_{r\acute{e}ag}(Zn^{2+})$$

On a : Q= I.
$$\Delta t = n(e^{-})$$
. F \longrightarrow $n(e^{-}) = \frac{I.\Delta t}{F}$

D'après 1 et 2 on a :
$$2n_{réag}(Zn^{2+}) = \frac{I.\Delta t}{F} \iff 2[Zn^{2+}]_{réag}.V_2 = \frac{I.\Delta t}{F} \implies [Zn^{2+}]_{réag} = \frac{I.\Delta t}{2F.V_2}$$

Enfin:
$$[Zn^{2+}]_{rest} = [Zn^{2+}]_i - \frac{I \cdot \Delta t}{2F \cdot V_2}$$
; $[Zn^{2+}]_{rest} = 10^{-1} - \frac{0.2 \times 30 \times 60}{2 \times 96500 \times 0.15}$

$$[Zn^{2+}]_{rest} = 0.087 \text{mo} \ell.L^{-1}$$

Exercice 2: (Les ondes):

1)

- 1-1) A
- 1-2) B

2)

- 2-1)
- L'onde ultrasonore parcourt 2d₁ pendant t₁.
- $\ \ \$ L'onde ultrasonore parcourt $2(d_1 + d_2)$ pendant t_2 .

Donc:
$$2(d_1 + d_2) > 2d_1 \longrightarrow \frac{2(d_1 + d_2)}{V} > \frac{2d_1}{V} \longrightarrow t_2 > t_1$$
 (V = Cte)

2-2) d_1 en fonction de t_1 et V:

On a:
$$V = \frac{2d_1}{t_1}$$
 \longrightarrow $d_1 = \frac{Vt_1}{2}$

2-3) L'épaisseur du fœtus (d₂):

On a :
$$V = \frac{2d_2}{t_2 - t_1}$$
 \Rightarrow $d_2 = \frac{V(t_2 - t_1)}{2}$; $d_2 = \frac{1540.(180.10^{-6} - 100.100^{-6})}{2}$

 $d_2=0,061 \text{ m}$

Exercice 3 : (physique nucléaire)

1) La composition du noyau $^{234}_{92}$ U:

$$^{234}_{92}U$$
 $\left\{ \begin{array}{c} 92 \ protons \\ 234 - 92 = 142 \ neutrons \end{array} \right.$

2) La valeur de $E_{\ell}(^{234}_{92}U)$ en MeV :

$$E_{\ell}(^{234}_{92}U) = [92m_p + 142m_n - m(^{234}_{92}U)].C^2$$

$$E_{\ell}(^{234}_{92}U) = [92x1,00728 + 142x1,00866 - 234,04095].C^{2}$$

$$E_{\ell}(^{234}_{92}U) = 1,85853 \text{ u.C}^2$$

$$E_{\ell}(^{234}_{92}U) = 1,85853 \times 931,5 \text{MeV.C}^{-2}.\text{C}^{2}$$

$$E_{\ell}(^{234}_{92}U) = 1731,22 \text{MeV}$$

3) L'équation de désintégration :

$$^{234}_{92}U \longrightarrow ^{230}_{90}Th + ^{A}_{Z}X$$

Lois de Soddy :
$$\begin{cases} 234 = 230 + A \\ 92 = 90 + Z \end{cases}$$
 Donc : ${}^{A}_{Z}X \cong {}^{4}_{2}He \longrightarrow$ Radioactivité α

Donc:
$${}_{Z}^{A}X \cong {}_{2}^{4}He \longrightarrow Radioactivité $\alpha$$$

4)

4-1) $N(^{230}_{90}Th)$ en fonction de N_0 , t et λ :

Selon les données d'exercice on a : $N_0 = N(^{234}_{92}U) + N(^{230}_{90}Th)$ avec : $N(^{234}_{92}U) = N_0e^{-\lambda t}$

Donc:
$$N_0 = N_0 e^{-\lambda t} + N(^{230}_{90}Th) \longrightarrow N(^{230}_{90}Th) = N_0 - N_0 e^{-\lambda t} \longrightarrow N(^{230}_{90}Th) = N_0(1 - e^{-\lambda t})$$

4-2) Montrons que $r = e^{\lambda t} -1$:

On a :
$$r = \frac{N({}^{230}_{90}Th)}{N({}^{234}_{92}U)}$$

$$r = \frac{N_0(1 - e^{-\lambda t})}{N_0 e^{-\lambda t}} = \frac{1 - e^{-\lambda t}}{e^{-\lambda t}} = \frac{1}{e^{-\lambda t}} - \frac{e^{-\lambda t}}{e^{-\lambda t}} \longrightarrow r = e^{\lambda t} - 1$$

4-3) La valeur de r_1 à t_1 =2.10⁵ ans :

$$r_1 = e^{\lambda t_1} - 1 = e^{2.823.10^{-6} \times 2.10^5} - 1$$

Exercice 4 :(L'électricité)

1) Charge de condensateur :

1-1) Montrons que $U_c = \frac{I_0}{C} t$:

On a :
$$q=C.U_c$$
 et $I_0=\frac{q}{t}$ $q=C.U_c=I_0.t$ $U_c=\frac{I_0}{c}t$

1-2) Vérifions que C=50μF:

 $U_c(t)$ est une fonction linière de forme U_c =kt avec : $k = \frac{\Delta U_C}{\Delta t} = \frac{2-0}{1-0} = 2(S.I)$

On a :
$$U_c = \frac{I_0}{C} t = kt$$
 $\longrightarrow \frac{I_0}{C} = k$ $\longrightarrow C = \frac{I_0}{k}$; $C = \frac{0.1.10^{-3}}{2} = 5.10^{-5} F = 50.10^{-6} F$

2) Décharge de condensateur :

2-1)

Résistance du conducteur ohmique en ohm(Ω)	R ₁ =0	R ₂ =390	
Courbe obtenue	C ₁	C ₂	
Régime des oscillations correspondant	Régime pseudopériodique	apériodique	

2-2) L'équation différentielle vérifiée par U_c(t) :

Loi d'additivité des tensions : $U_L + U_{R1} + U_C = 0$

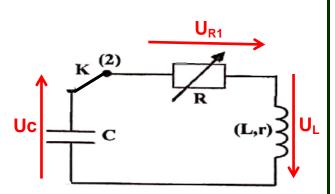
$$✓$$
 R₁=0 donc U_{R1} = R₁.i = 0

$$V_{L} = L \frac{di}{dt} + ri = L \frac{d^{2}q}{dt^{2}} + r \frac{dq}{dt} = LC \frac{d^{2}U_{C}}{dt^{2}} + rC \frac{dU_{C}}{dt}$$

$$LC \frac{d^{2}U_{C}}{dt^{2}} + rC \frac{dU_{C}}{dt} + U_{c} = 0$$

$$\frac{d^2U_C}{dt^2} + \frac{rC}{LC} \cdot \frac{dU_C}{dt} + \frac{1}{LC} \cdot U_c = 0$$

$$\frac{\mathrm{d}^2 \mathrm{U}_{\mathrm{C}}}{\mathrm{d} \mathrm{t}^2} + \frac{r}{L} \cdot \frac{\mathrm{d} \mathrm{U}_{\mathrm{C}}}{\mathrm{d} \mathrm{t}} + \frac{1}{LC} \cdot \mathrm{U}_{\mathrm{c}} = 0$$



2-2) Montrons que L=0,1H:

On a:
$$T = T_0 = 2\pi\sqrt{LC}$$
 \leftarrow $T^2 = 4\pi^2.LC$ \leftarrow $L = \frac{T^2}{4\pi^2.C}$

Graphiquement : T = 10ms = 0.01s

Donc: L =
$$\frac{(0.01)^2}{4\pi^2.50.10^{-6}}$$

L=0,2H

3) Etude énergétique :

3-1)

t(ms)	0	13	20
E _t (mJ)	0,64	0,36	0,24

3-2) L'énergie E_t est <u>diminué</u> en fonction de temps à cause de <u>effet Joule</u> (résistance interne de bobine).

3-3) La valeur de i_1 à t_1 =13ms :

On a :
$$E_{m1} = \frac{1}{2} L.i_1^2$$
 $\downarrow i_1 = \pm \sqrt{\frac{2.E_{m1}}{L}}$ $\downarrow i_1 = \pm \sqrt{\frac{2.E_{m1}}{L}}$

à
$$t_1$$
=13ms on a : E_{m1} =0,22mJ ; i_1 = $\sqrt{\frac{2x0,22.10^{-3}}{0,2}}$

i₁=0,047A

4) Réception d'une onde électromagnétique:

4-1) La partie 1 : Sélection de l'onde émise par la station radio.

4-2) La valeur de C₀:

On a :
$$f = \frac{1}{2\pi\sqrt{LC_0}}$$
 \longleftrightarrow $f^2 = \frac{1}{4\pi^2L_0C_0}$ \longleftrightarrow $C_0 = \frac{1}{4\pi^2.L_0.f^2}$; $C_0 = \frac{1}{4x10x100.10^{-3}x(180.10^3)^2}$

$$C_0 = 7,72.10^{-12}F$$

Exercice 5: (mécanique)

1)

1-1) Vérifié que
$$\frac{d^2x}{dt^2} = \frac{F}{m}$$
:

- ❖ Système étudié :{solide (s)}
- ❖ Bilan des forces : \overrightarrow{R} ; \overrightarrow{F} ; \overrightarrow{P}
- ❖ La 2^{éme} loi de newton : $\sum \overrightarrow{f_{ext}} = \mathbf{m} \cdot \overrightarrow{a} \iff \overrightarrow{\mathbf{R}} + \overrightarrow{\mathbf{F}} + \overrightarrow{\mathbf{P}} = \mathbf{m} \cdot \overrightarrow{a}$
- ❖ La projection sur l'axe (ox) : $0 + F + 0 = m.a_x$; avec : $a_x = \frac{d^2x}{dt^2}$

$$\mathbf{m} \cdot \frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2} = \mathbf{F} \longleftrightarrow \frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2} = \frac{\mathbf{F}}{\mathbf{m}}$$

1-2) Vérifié que a_G=2.ms⁻²:

$$a_G = \frac{\Delta V}{\Delta t} = \frac{0.2 - 0}{0.1 - 0}$$
 \longrightarrow $a_G = 2.ms^{-2}$

1-3) La valeur de F:

On a :
$$F = m.a_G = 2x2$$
 F=4N

1-4) Montrons que x=t²:

On sait que :
$$x = \frac{1}{2} a_{G.}t^2 + V_{0.}t + x_0$$

à t=0 on a :
$$V_0$$
=0 et x_0 =0 donc : $X = \frac{1}{2} a_{G.} t^2 = \frac{1}{2} \times 2. t^2$

Enfin: x=t2

2)

2-1) Montrons que le mouvement de G est rectiligne uniforme sur (AB) :

Selon les données d'exercice F=0 sur la partie AB : \implies $a_G = \frac{F}{m} = 0 \iff \frac{\Delta V}{\Delta t} = 0 \iff V = Cte$

Donc la vitesse de G est constante sur la partie AB | le mouvement de G est rectiligne uniforme sur (AB).

2-2) La valeur de V sur (AB) :

V_A=V_B= Cte, car le mouvement de G est rectiligne uniforme sur (AB).

On a:
$$X_A = t_A^2$$
 \longrightarrow $V_A = \frac{dx_A}{dt} = \frac{d}{dt}(t_A^2) = 2t_A$

Avec:
$$OA = x_A - x_O = x_A - 0 = t_A^2$$
 $t_A = \sqrt{OA}$

Enfin:
$$V_A = 2\sqrt{OA}$$
, $V_A = 2\sqrt{2,25}$

 $V_A = 3m.s^{-1}$

